In contrast to anti-tumor activity, YT cell and primary NK cell cytotoxicity for Cryptococcus neoformans bypasses LFA-1.
نویسندگان
چکیده
NK cell cytotoxicity requires two positive signals for killing of tumors. Activation receptors induce polarization of the microtubule organization center and degranulation, while leukocyte function-associated antigen (LFA)-1 is required for conjugate formation and actin polymerization and under some circumstances may be sufficient for NK cell cytotoxicity. Although the receptor for direct killing of fungi is not known, CD18, the beta2 chain of LFA-1, binds components of the capsule and cell wall of the opportunistic pathogen Cryptococcus neoformans, namely the polysaccharides glucoronoxylomannan and galactoxylomannan. Herein, we also demonstrate that LFA-1 was concentrated in regions of the NK cell surface interacting with C. neoformans. Consequently, there was compelling evidence to hypothesize that NK cells would also use LFA-1 to recognize and kill C. neoformans. Using a combination of NK cell lines that did or did not express LFA-1 or by using a CD18-specific functional blocking antibody, we confirm that NK cell anti-tumor activity is critically dependent upon the expression of LFA-1. Duplicating the events of tumor cytotoxicity, NK cells form conjugates with cryptococcal targets, rearrange the cell cytoskeleton to develop an NK immunologic synapse and release perforin-containing granules; however, each of these events occurred independently of LFA-1. Furthermore, NK cell-mediated killing of C. neoformans was detectable in both NK cells pre-treated with CD18-blocking antibodies and in NK cells lacking cell surface LFA-1 expression. These results demonstrate that in the absence of LFA-1 expression, NK cells are fully capable of recognizing a target (C. neoformans) and retain all of the events required for cytotoxicity.
منابع مشابه
An Acidic Microenvironment Increases NK Cell Killing of Cryptococcus neoformans and Cryptococcus gattii by Enhancing Perforin Degranulation
Cryptococcus gattii and Cryptococcus neoformans are encapsulated yeasts that can produce a solid tumor-like mass or cryptococcoma. Analogous to malignant tumors, the microenvironment deep within a cryptococcoma is acidic, which presents unique challenges to host defense. Analogous to malignant cells, NK cells kill Cryptococcus. Thus, as in tumor defense, NK cells must kill yeast cells across a ...
متن کاملHuman natural killer cells do not inhibit growth of Cryptococcus neoformans in the absence of antibody.
The interaction between human natural killer (NK) cells and yeast cells of Cryptococcus neoformans was investigated because experiments in mice indicated that NK cells inhibited the growth of C. neoformans. Strains of C. neoformans serotype A that differed in both resistance to alveolar macrophages and the size and composition of their capsules were evaluated. Human NK cells, which were isolate...
متن کاملIn vitro binding of natural killer cells to Cryptococcus neoformans targets.
Nylon wool-nonadherent splenic cells from 7- to 8-week-old CBA mice were further fractionated on discontinuous Percoll gradients. Enrichment of natural killer (NK) cells in Percoll fractions 1 and 2 was confirmed by morphological examination, by immunofluorescent staining, and by assessing the cytolytic activity of each Percoll cell fraction against YAC-1 targets in the 4-h51Cr release assay. C...
متن کاملLow Dose of Lenalidomide Enhances NK Cell Activity: Possible Implication as an Adjuvant
Background: Lenalidomide, a synthetic immunomodulatory drug, has a wide range of features including anti-angiogenic and anti-proliferative properties. To date, researchers have shown that lenalidomide is capable of ameliorating the immune system factors and antitumor responses. Most researchers have reported that lenalidomide enhances the immune response in certain cancer patients through sever...
متن کاملRequirement and redundancy of the Src family kinases Fyn and Lyn in perforin-dependent killing of Cryptococcus neoformans by NK cells.
Natural killer (NK) cells directly recognize and kill fungi, such as the pathogenic fungus Cryptococcus neoformans, via cytolytic mechanisms. However, the precise signaling pathways governing this NK cell microbicidal activity and the implications for fungal recognition are still unknown. Previously, it was reported that NK cell anticryptococcal activity is mediated through a conserved phosphat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International immunology
دوره 21 4 شماره
صفحات -
تاریخ انتشار 2009